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Abstract

We consider an approach to blame attribution based on coun-
terfactual reasoning in probabilistic generative models. In this
view, people intervene on each variable within their model and
assign blame in proportion to how much a change to a variable
would have improved the outcome. This approach raises two
questions: First, what structure do people use to represent a
given situation? Second, how do they choose what alternatives
to consider when intervening on an event? We use a series of
coin-tossing scenarios to compare empirical data to different
models within the proposed framework. The results suggest
that people sample their intervention values from a prior rather
than deterministically switching the value of a variable. The
results further suggest that people represent scenarios differ-
ently when asked to reason about their own blame attributions,
compared with the blame attributions they believe others will
assign.

Keywords: counterfactuals; blame attribution; probabilistic
models; causal reasoning

Introduction
Alice and Bob play a coin-tossing game. If their coin tosses
match, they win. Alice goes first and tosses heads, Bob goes
second and tosses tails, and hence they lose. Who, if anyone,
will be blamed? Counterfactually, what would have happened
if Alice had tossed heads? One intuition is that how much
someone will be blamed for an outcome is closely related
to how strongly they affected the outcome (cf. Spellman,
1997). Through counterfactual thinking, people can reason
how a change in the past would have affected the present and
use such reasoning for cognitive tasks including social judg-
ments, causal attribution, problem solving, and learning (see
Roese, 1997; Byrne, 2002, for reviews). But how do peo-
ple reason counterfactually? And what is the relationship be-
tween counterfactual thinking and blame attribution?

Psychological research on counterfactual reasoning has re-
vealed factors that influence which events attract counterfac-
tual thoughts, including unusual events (Kahneman & Miller,
1986), early events in a causal chain (Wells, Taylor, & Turtle,
1987), and late events in a temporal chain (Byrne, Segura,
Culhane, Tasso, & Berrocal, 2000). There have also been
formal accounts which aim to explain the empirical findings
in terms of principled mental operations that do not depend
on event features (Spellman, 1997; Byrne, 2002; Chockler
& Halpern, 2004; Rips, 2010; Petrocelli, Percy, Sherman,
& Tormala, 2011). Some of these formal models have been

separately tested against empirical data (Sloman & Lagnado,
2005; Gerstenberg & Lagnado, 2010).

Kahneman and Tversky (1982) suggest that people reason
counterfactually by using a “simulation heuristic”, whereby
they mentally alter events and run a simulation of how things
would have gone otherwise given these changes. In this pa-
per, we use a computational-level framework that formalizes
the spirit of this suggestion: when attributing blame, people
mentally alter each possible event in turn, consider the con-
sequences for the outcome, and blame an event in proportion
to how much the change would have improved the outcome.

We model this computation of counterfactual conse-
quences using interventions on causal models (Pearl, 2000).
We explore what causal models people use to represent the
games in our experiments and how they choose alternatives
when intervening on a particular event.

The plan for the paper is as follows. We first describe
the formal framework this work is based on and the space of
models we explore. We then report results of experiments in
which we varied aspects of the coin-tossing game described
above, and suggest a possible explanation for these results
within our framework. We conclude by discussing implica-
tions and limitations of this account, and possibilities for fu-
ture research.

Formal framework
We assume that, when reasoning counterfactually, people rep-
resent the situation they are reasoning about using a proba-
bilistic generative framework. Probabilistic models have been
used to explain many aspects of high-level cognition, includ-
ing perception, prediction, decision making and social rea-
soning (Tenenbaum, Kemp, Griffiths, & Goodman, 2011). In
this paper, we use causal Bayes nets and the functional equa-
tions they are derived from as the underlying probabilistic
generative framework (Pearl, 2000). Other representations
are possible—see, for example, Gerstenberg and Goodman
(in prep) for an approach to counterfactual reasoning based
on probabilistic programs.

We model people’s reasoning about blame as follows.
First, consider each event in the situation—represented by
a variable in a causal Bayes net—and intervene on it, i.e.,
consider a counterfactual value for this event (‘do’ in Pearl,
2000). Each such intervention results in a distribution over
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counterfactual worlds, where a counterfactual world is an as-
signment of values to variables. Next, compare these dis-
tributions to the actually observed world in order to assign
blame. The variable being intervened on is assigned a degree
of blame proportional to the difference in expected utility be-
tween the counterfactual world and the actual world. When
interventions are chosen stochastically, we take the expecta-
tion over intervention values.

In our experiments, there are two possible outcomes, a win
(1) and a loss (0), and the actual outcome is described as a
loss. In this setting, our model of blame judgments is equiva-
lent to assigning a degree of blame to a variable in proportion
to the probability of reaching a counterfactual world in which
the game is won after intervening on the variable. This com-
bines the idea of using the ‘do’ operator as a psychologically
plausible basis for counterfactual thinking (e.g., Sloman &
Lagnado, 2005) with the idea of assigning causality by con-
sidering how each of the events in a given scenario affects the
outcome (e.g., Spellman, 1997).

The framework as described presents at least two open
questions about how people reason counterfactually to at-
tribute blame.

What generative structure do people use to represent a sit-
uation? Even for simple scenarios, there exists a rich space
of possible representations. Consider the coin-tossing game
described in the introduction. Previous work suggests that
people sometimes believe themselves or others capable of
control over events such as coin tosses that are in fact ran-
dom (Langer, 1975; Shafir & Tversky, 1992). Based on this
work, we consider two simple generative models for the coin-
tossing game, a no-control model that represents the coin
tosses as independent, and a control model that represents
the players as having some control over their tosses, assumes
that they have knowledge of the previous player’s toss, and
that they try to match this toss (see Figure 1). This ‘con-
trol’ is captured in the following way: If the coin tossed by
the first player came up 1 (‘heads’), the bias for the second
player’s coin getting 1 is now α > 0.5. If the first player
tossed 0 (‘tails’), then the bias for the second player’s coin
getting 0 is now α > 0.5. When we compute counterfactu-
als in the ‘control’ setting, we use the following functional
equations that reflect this idea: u1 = Bernoulli(θ1), u2a =
Bernoulli(α), u2b = Bernoulli(1 − α), C1 = u1, and C2 =
u2a if C1 = 1, otherwise u2b. We later discuss a perspective-
dependent model, which combines the ‘control’ and ‘no-
control’ models.

What new value do people assign to the inter-
vened-upon variable? The ‘do’ operator produces coun-
terfactual worlds when given a variable to intervene on and
a value to set the variable to, but there is a question about
what value people use. One possibility is that people set the
intervened-upon variable to be different from what it was be-
fore the intervention. The idea of only considering alterna-
tives to reality when reasoning counterfactually has intuitive
appeal. This approach is taken by Gerstenberg, Goodman,
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Figure 1: Different generative structures for the coin-tossing game.
Coin tosses are drawn from a Bernoulli distribution with the coin
bias as its parameter. ‘heads’ and ‘tails’, and ‘win’ and ’lose’ are
replaced by 1 and 0. (i) In the ‘no-control’ version the bias is simply
the unchanged bias of the coin. (ii) In the ‘control’ version players
are represented as having some influence over the coin, as is formal-
ized in the text.

Lagnado, and Tenenbaum (2012) in reasoning counterfactu-
ally about physical events. In the case of binary variables,
as in the current study, this involves simply switching the
observed value, hence we refer to this way of choosing in-
tervention values as intervene-switch. The generalization to
non-binary variables is not immediate and is not considered
here.

A second possibility is to draw the intervention value from
the (conditional) prior over the variable being intervened
upon. This allows an assessment of how unlikely the coun-
terfactual event is, which has been stressed as an important
factor by Petrocelli et al. (2011). We refer to this possibility
for setting intervention values as intervene-prior. Figure 2
illustrates these two possibilities. A third possibility is that
people choose an intervention value optimally, in such a way
as to maximize the expected utility of counterfactual worlds.
In our models for the coin-tossing domain, this possibility
coincides with intervene-switch, hence we do not discuss it
separately.

Each combination of these two factors—which causal
structure to use, and how to choose an intervention value—
results in a different model of blame attribution within our
general framework. There are other factors which remain the
subject of future research and which will almost certainly be
necessary to predict subjects’ judgments in richer situations.
However, even these two factors offer a space for exploring
how people reason counterfactually and assign blame.

A simple example of predicting blame judgments
Consider again the coin-tossing game with a fair coin, in
which the player going first (C1) tosses heads and the player
going second (C2) tosses tails, resulting in a loss. Who is
to blame for the loss? We examine the predictions of four
different models. In this scenario, some of the models make
the same predictions; other scenarios used in our experiments
provide additional discriminatory power.

1. no-control/intervene-prior: Coin tosses are independent
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Figure 2: How to choose a new value for the intervened-upon vari-
able, using the coin-tossing game as example. In the actual world
the first player tossed heads (1) and the second player tails (0), and
they thus lost. In intervening upon the first player’s coin toss there
are two possibilities: (i) intervene-switch: the first player’s coin toss
is changed to be the opposite of what it was (i.e. from 1 to 0), (ii)
intervene-prior: intervention values are chosen from the prior and
so there is a θ1 chance of setting the first player’s toss to heads and
a 1−θ1 chance of setting the first player’s toss to tails.

and values for interventions are chosen by drawing them
from the variable prior. We begin by considering an in-
tervention to the variable C1. Because the coin is fair,
with probability 0.5 we choose the intervention ‘tails’, re-
sulting in the outcome variable being assigned a ‘win’, as
both players now tossed matching coins (counterfactually
speaking). With probability 0.5 we choose the intervention
‘heads’, resulting in a ‘loss’. So, by intervening on C1 we
improve the odds of winning from 0 (actual observation) to
0.5, and the amount of blame assigned to C1 is 0.5. What
about the second player’s blame? For C2 the process is the
same as C1, thus the blame for C2 is also 0.5. Hence, this
model predicts no difference in blame between C1 and C2.

2. control/intervene-prior: Players are represented as having
some control over their coin (Figure 1(ii)) and interven-
tions are selected in the same way as before. The inter-
vention on C1 works as described above, resulting in a 0.5
amount of blame. However, in intervening on C2, we draw
from a prior skewed towards ‘heads’ (the coin now has a
bias α > 0.5 towards heads). With probability α we choose
the intervention ‘heads’ for C2, and with probability 1−α

we choose ‘tails’. This results in a ‘win’ with probability
α > 0.5, meaning C2 will be blamed more than C1.

3. no-control/intervene-switch: Coin tosses are independent
and the value used for an intervention is different from the
observed value of the variable. Because C1 was observed to
be ‘heads’, an intervention always sets it to ‘tails’, resulting
in a ‘win’ with probability 1. This model also predicts no
difference in blame between the players.

4. control/intervene-switch: Players are represented as having

some control over their coin (Figure 1(ii)) and the value
used for an intervention is different from the observed
value of the variable. Using this model, the control players
have does not make a difference, as the intervention on C1
is always ‘tails’ (switching it from ’heads’), and the inter-
vention for C2 is always ‘heads’. In a way similar to the
previous variant, the probability for a ‘win’ resulting from
intervening on either C1 or C2 is 1, and thus both players
receive the same blame.

Experiment

Procedures and methods

One hundred subjects per condition were recruited on Me-
chanical Turk. Approximately twenty subjects were dropped
in each condition for failing comprehension questions. We
presented descriptions of simple scenarios involving blame
attribution in the aforementioned coin-tossing game. All sce-
narios share the following:

(1) An introduction describing the game: Each person
tosses a coin in turn. If all coins land the same, the players
each receive $1000, and otherwise receive $0.

(2) Subjects were told the order of play, and the result of
each coin toss (e.g., “Bob tosses his coin first. It comes up
heads. Then you toss a coin. It comes up tails.”).

(3) The end result was a loss.
(4) Subjects were asked, depending on condition, how

much blame they attributed to the players, or how much
blame they believed the players would attribute.

(5) Subjects responded using a discrete 1-7 scale, with 1
marked minimal blame and 7 marked maximal blame.

Results and discussion

We use the space of models we have discussed to examine
predicted differences in blame attribution, and test these pre-
dictions using one-sided Student t-tests.

1. Same room, subject not involved Subjects read descrip-
tions of Player 1 and Player 2 playing the coin game. Player
1 tosses heads, then Player 2 tosses tails. Subjects were asked
how much Player 1 would blame Player 2, and how much
Player 2 would blame Player 1. The results of these and sub-
sequent experiments, as well as the model predictions, are
shown in Figure 3. This first experiment replicates the tem-
porality effect (Miller & Gunasegaram, 1990) in the sense
that subjects believe that Player 1 will blame Player 2 more
than Player 2 will blame Player 1 (p<0.0001, cf. Figure 3a).
The only one of the four simple models under consideration
which accords with these results (rows 3-6 in Figure 3) is the
model which assumes causal control and draws intervention
values from the prior. However, experimental results to be
discussed shortly imply that the situation is more subtle. We
first test the sensitivity of assumptions about causal control to
knowledge about epistemic access (i.e. knowing the result of
the the other player’s coin toss).
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Figure 3: Empirical results and model predictions for the coin-tossing game. Columns represent separate experiments, with the empirical
data shown in the top row. The y-axis is the mean amount of blame subjects believe will be assigned to the player on the x-axis, by the other
player in the game. For example, in Experiment 1 subjects believe that Player 1 is assigned a 2.42 blame rating by Player 2, while Player 2 is
assigned a 3.56 blame rating by Player 1. In each sub-figure, the player on the left side of the x-axis is the one going first. For example, in
Experiment 1 Player 1 tosses the coin first. Model predictions are colored blue if they qualitatively match the ordinal blame judgments in the
empirical results, and are grey otherwise. The amount of blame predicted by the models is normalized. We set α = 0.7 in the above, but this
makes no difference to the qualitative results.
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2. Different rooms, subject not involved Subjects read
descriptions of a game that only differed from the one in the
previous experiment by players being in different rooms, such
that Player 2 was unaware of the result of Player 1’s coin toss.
In this experiment, subjects predict that Player 1 will blame
Player 2 significantly less than in the ‘same room’ scenario
(p<0.05, cf. Figure 3b vs. a). There is no significant differ-
ence in the amount of blame attributed by the first and second
player.

One explanation of these findings is that causal control is
only believed possible when the second player is aware of the
first player’s coin toss. That is, subjects have a sophisticated
model of the situation that treats the other players as agents
that have the capacity for control, but that requires epistemic
access for the agents to make use of this capacity.

Lack of epistemic access is not the only way to explain the
results of this experiment. The two models based on setting
intervention values by switching the observation (intervene-
switch) are also consistent with these results. We will shortly
provide independent evidence for sampling from the prior
over switching, but first we manipulate whether subjects re-
port their own blame judgments or their predictions about the
judgments of others.

The ‘classic’ temporality effect replicated in Experiment
1 may strike some readers as odd. Surely one person is
not to blame more than another in a purely random game?
To examine this intuition, which is supported by previous
research (Mandel, 2003), we now compare first-person and
third-person blame judgments.

3. Same room, subject involved The game was described
as in Experiment 1, but the subject was described as play-
ing the game with another player (denoted ‘Other Player’ in
Figure 3). One group of subjects was told that they tossed
first, while another group was told that they tossed second. In
both cases the player going first tosses ‘heads’ and the player
going second tosses ‘tails’. Subjects were asked how much
they themselves would blame the other player, and how much
they believed the other player would blame them. When sub-
jects are asked about how much they think the other player
will blame them, the temporality effect is replicated. That is,
subjects believe that the other player will blame them sig-
nificantly more when subjects flip second rather than first
(p¡0.001 cf. blame to ‘Subject’ in Figure 3c and d).

Crucially, however, when comparing the amount of blame
subjects attribute to the other player, we find no effect of po-
sition (cf. blame to ‘Other’ in Figure 3c and d). That is,
the temporality effect does not exist when subjects are asked
about the amount of blame they themselves attribute. As
in Experiment 2, the no-control/intervention-prior model is
consistent with the lack of a temporal effect, as are the two
models in which intervention values are set by switching the
observation. One hypothesis is thus that subjects do not them-
selves attribute causal control when assessing blame, but be-
lieve that other people do so (this possibility is represented by
the ‘perspective-dependent’ model shown in the second row

of Figure 3). It is also possible, however, that people think
about choosing the intervention values differently depending
on whether they are taking a first or third person perspec-
tive. That is, when considering how other people model a
situation, they draw interventions from a prior, but when rea-
soning about their own perspective, they draw interventions
by switching variables. The latter suggestion appears overly
complex, but is not ruled out by the evidence presented so far.

We thus consider an experiment aimed specifically at ex-
amining whether people do set intervention values by sam-
pling from the prior.

4. Biased coin, subject involved Subjects were told that
they participated in the game with one other player. In one
case, they were told that the other player used a coin bi-
ased 70% towards heads, in another case biased 90% to-
wards heads. In both cases, subjects were told that they went
first and got heads, and the other player tails. Subjects were
asked how much they blamed the other player. We find that
the greater the bias of the coin, the more the other player is
blamed. The other player is blamed significantly more when
the bias is 0.7 than when the coin is fair (p < 0.05, data from
Experiment 3 were used for this comparison), and signifi-
cantly more when the bias is 0.9 (p < 0.05; cf. blame to
‘Other’ in Figure 3e). Subjects’ ratings about how they them-
selves will be blamed were not affected by the bias of Other’s
coin (cf. blame to ‘Subject’ in Figure 3e). For modeling this
situation, we make the simplifying assumption that the sec-
ond player’s coin is entirely dependent on the specified bias,
rather than on any causal control.

The models which are consistent with the effect of coin
bias are those where values for the intervention are drawn
from the prior. The results are analogous to experiments
showing the tendency of people to focus on more unusual
events when asked to reason counterfactually (Kahneman &
Miller, 1986).

Given the small space of models we consider, one parsimo-
nious account of the empirical data is that both when attribut-
ing blame themselves and when reasoning about how others
attribute blame, people draw values for the intervention from
the prior. Our results further suggest that people may assume
that other people believe in causal control of random events,
but that they themselves do not. This model of causal control
seems to be sensitive to factors such as the other player’s state
of knowledge.

General discussion
We have explored aspects of a psychological framework for
counterfactual reasoning, focusing in particular on its use for
blame attribution. We have assumed that people represent the
situation using probabilistic generative models and that they
assign blame to an event by determining the counterfactual
consequences of intervening on this event.

Within this framework, we have investigated what causal
structure people use to represent a given situation and how
people assign values to intervened-upon variables in the do-
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main of coin-tossing games. In this domain, psychological ef-
fects such as the temporality effect and the tendency to focus
on unusual events seem to arise naturally from counterfactual
reasoning using probabilistic models.

We have presented data that suggests that people sample
the values of their interventions from a prior rather than deter-
ministically switching the variable to an alternate, unobserved
value. Experimental evidence suggests that people may rep-
resent situations involving random events differently when
reasoning about their own judgements compared to their pre-
dictions about the judgements made by others. People may
model others as believing that such situations involve causal
control, but they themselves may not believe in such con-
trol. One possible explanation for this perspective-dependent
representation is that people model others’ views in less de-
tail than their own. For example, people may have a default
assumption of causal control, but in situations such as coin
games, they may be able to suppress this assumption. This
suppression may take additional resources which, in general,
may not be available or used when predicting how others rep-
resent the same situation.

This perspective-dependent difference in representation or
computation provides an intriguing avenue for future re-
search. For example, does there exist a similar difference in
games of skill where control is the correct assumption? Be-
yond perspective-dependent differences, it is almost certain
that different people model identically described situations in
different ways, which suggests a per-subject analysis in addi-
tion to the aggregate approach taken in this paper.

There are many other ways in which our modeling and ex-
perimental results can be extended, even in the simple coin-
tossing game. First, we do not explicitly take into account
the prior probability of winning a game. Second, we do not
explore situations in which the value of multiple variables
would need to change to result in a win, for example a sit-
uation in which six people were playing the game with two
people tossing tails and four people tossing heads. Third,
while our model predictions are quantitative, we have re-
stricted ourselves here to a qualitative analysis. Fourth, while
we have modeled agents in some situations as having causal
control, we did not give a full account of agents as having —
and reasoning about—intentionality, foresight, and complex
epistemic states, which are known to affect blame attribu-
tion (Lagnado & Channon, 2008). To capture the subtlety of
human blame attribution and counterfactual thinking, richer
models which include a more sophisticated representation of
agents and their beliefs will be necessary.
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