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Abstract
People have a common-sense notion of intelligence and use it
to evaluate decisions and decision-makers. One can attribute
intelligence by evaluating the strategy or the outcome of a
goal-directed agent. We propose a model of intelligence at-
tribution, based on inverse planning in Partially Observable
Markov Decision Processes (POMDPs) in a probabilistic envi-
ronment, inferring the most likely planning parameters given
observed actions. The model explains the agent’s decisions
by a combination of probabilistic planning, a softmax decision
noise, prior knowledge about the world and forgetting, estimat-
ing the agent’s intelligence by a proxy measure of efficiently
optimising costs and rewards. Behavioural evidence from two
experiments shows that people cluster into those who attribute
intelligence to the strategy and those who attribute intelligence
to the outcome of the observed actions. People in the strat-
egy cluster attribute more intelligence to decisions that min-
imise the agent’s overall cost, even if the outcome is unlucky.
People in the outcome cluster attribute intelligence to the out-
come, judging low-cost outcomes as a sign of intelligence even
if the outcome is accidental and make neutral judgements be-
fore they observe the result. Our model explains human in-
telligence judgements better than perceptual cues such as the
number of revisits or moves.
Keywords: Theory of mind; Intelligence attribution; Social
cognition; Bayesian inference; Partially Observable Markov
Decision Processes; Inverse planning

Introduction
In everyday life people make fast, intuitive judgements of in-
telligence. For example, it is more intelligent to rush to catch
an infrequent bus than to run towards a subway that departs
every 3 minutes, and solving a puzzle from scratch is more
intelligent than looking up the answer in a key. Existing qual-
itative accounts of intelligence explain in general terms why
people might describe actions as intelligent or unintelligent.
According to Dennett’s rationality principle, people expect
intentional agents to act efficiently in order to achieve their
desires, given their beliefs about the world (Dennett, 1989).
People may describe behaviour as intelligent if it agrees with
their expectations of what the agent should do, and as stupid
if the behavior can be explained by a failure of attention, over-
confidence or loss of control (Aczel, Palfi, & Kekecs, 2015).

One way to attribute intelligence is to judge the agent’s
efficiency in achieving a goal, echoing the rationality princi-
ple. Efficiency means achieving a rewarding goal at a min-
imal cost. So, an observer attributing intelligence needs to
understand the costs and rewards of a situation and how to
plan under uncertainty to maximise the likelihood of success.
Evaluating the specific action of an agent seeking a goal re-
quires the observer to ask ‘Is this the best goal for that agent?’

and ‘Is this the best way to achieve that goal?’. The partic-
ular end-goal might even be negative, but the behavior could
still be conceded as intelligent and thus preferable. Children
as young as two understand and value competence, preferring
agents who can perform an action on the first attempt, even
if the agent is mean (Jara-Ettinger, Tenenbaum, & Schulz,
2015).

However, fully evaluating an agent’s planning procedure
can be computationally hard, and observing an agent’s out-
come can provide a shortcut to evaluating its intelligence.
In effect, the observer might think ‘If they achieved their
goal, they must be smart’, even though the goal was achieved
by sheer luck or prior knowledge. Adults under conditions
of cognitive load (Olson et al., 2013) and 7-year old chil-
dren perceive lucky persons as more likable (Olson, Banaji,
Dweck, & Spelke, 2006; Olson, Dunham, Dweck, Spelke, &
Banaji, 2008), which suggests that lucky others may also be
seen as more intelligent.

In this paper we develop a formal model of intelligence at-
tribution based on Bayesian inverse planning (Baker, Saxe, &
Tenenbaum, 2011). We describe two behavioral experiments
that validate the model, considering the role of rational ex-
pectations and mental short-cuts. The next section gives an
informal sketch of the model, followed by formal modelling
and behavioral experiments to evaluate the model.

Computational Framework
To describe intelligent behaviour formally, consider a simple
context in which it can be observed: a 2-D animation of ge-
ometric shapes. Most adults describe the actions of agents
in such displays by constructing a narrative about the actors’
mental states (Heider & Simmel, 1944). Such 2-D anima-
tions were previously used to inform computational models
of goal attribution (Baker et al., 2011), preference attribu-
tion (Jara-Ettinger, Baker, & Tenenbaum, 2012) and social
behaviour (Ullman et al., 2009). Building on these studies
we propose a model of intelligence attribution in the context
of a rational agent looking for an object in a 2-D world.

Consider an agent (for concreteness, a mouse) looking for a
goal (a treat) in a maze. The mouse is familiar with the layout
of the maze: it knows which rooms are big and which are
small, it knows which rooms are close and easily accessible
and which are far away. The mouse knows there is a treat in
the maze, but does not know where it is. The treat is equally
likely to be anywhere. What should an intelligent mouse do
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to find the treat? It should plan efficiently. And when seeing
the mouse running through the maze, how does one know if
it is intelligent? By comparing its behavior to the behaviour
expected of an agent that plans efficiently.

We formalise a rational agent’s decision-making process as
probabilistic planning in a Partially Observable Markov De-
cision Processes (POMDP). POMDP assumes that the agent
acts sequentially to maximise the reward and minimise the
cost of each action, given its beliefs about the world (Fig-
ure 1). After each action the agent updates its beliefs based
on observations caused by the previously chosen action.

Figure 1: (a) POMDP is a sequential process described by
beliefs Xt , observations Ot , rewards Rt and actions At at time
step t. Arrows indicate a causal relationship.

A viewer observes decisions made by an agent and judges
the agent’s intelligence by inferring the parameters guiding
the agent’s planning. The observer estimates the agent’s in-
telligence by a measure of agent efficiency, so that the more
optimal agents are judged as more intelligent. We define the
agent optimality rank (Table 1) based on how well the cor-
responding planing strategies optimise the long-term costs
and rewards over randomly-generated mazes with a randomly
placed goal. Thus, this optimality rank is defined for the
model problem and not as a universal cost-minimising strat-
egy. Prior knowledge indicates a non-uniformly distributed
prior belief about the goal’s location. Since the agent sup-
posedly does not know where the goal is, we use such prior
knowledge (with correct information) to represent luck. De-
cision noise is captured by a so f tmax parameter, set such that
actions are chosen with a probability proportional to their re-
ward. To model the observer, we use Bayesian inverse infer-
ence on the POMDP by integrating the likelihood of the ob-
served actions with the prior over a set of possible POMDP
parameters (Baker et al., 2011).

In principle, this model can describe an evaluation of any
behaviour encoded in discrete time and space and can admit
a variety of cost functions, reward functions and discount rate
models. For concreteness, we limit the planning part of the
model to three possible reasons for deviating from an opti-
mal search strategy: prior knowledge about the world, deci-
sion noise, and forgetting. While this model is not meant to
fully capture the complexities of human intelligence attribu-
tion, it provides a computational ideal-observer benchmark to
test against experimental data and perceptual-based metrics.

Table 1: Agent optimality rank

Rank Description
6 Optimal
5 Suboptimal with decision noise or

Suboptimal or with prior knowledge
4 Suboptimal with decision noise and prior knowledge
3 Suboptimal with decision noise and forgetting
2 Suboptimal with prior knowledge,

forgetting, and decision noise
1 Suboptimal and seemingly random

The Gridworld and POMDP in Detail
Formally, a model world (a maze) is described by dis-
crete time, 0 ≤ t ≤ T , and a grid of cells, W = {w(i, j)},
w(i, j) ∈ {wall,empty,goal}. A single cell contains a goal:
∃(ig, jg)→w(ig, jg)= goal. The agent acts based on its belief
about the world, which is a set of probabilities Xt = {P(xs)t}.
Here X = {xs} is the set of all possible world states such that
xs represents a world with the goal in cell s. X0 encodes the
set of the agent’s initial beliefs.

The agent knows its own location at time t, Lt and sees
1800 of visual field. The results are observation probabilities
Ot = P(W |Xt ,Lt). A cell s is visible if the four rays cast from
each of the corners of Lt to the corresponding corners of cell
s do not intersect walls. If s is visible then Ot(s) = 1, other-
wise Ot(s) = 0. Unseen cells are portrayed as dark, and cells
previously seen are patterned (Figure 2). The agent moves
one grid cell at a time, choosing among available determinis-
tic actions A(Lt) = {ai} ∈ {N,S,W,E}. An action is available
if it does not lead into a wall. The agent updates its beliefs
contingent on observations using standard Bayesian updating:
Xt+1 = P(W |At ,Xt) ∝ P(Ot |At ,Xt)P(At |Xt)P(W )

Calculating Rewards
At time t, the agent calculates the value of each action
Q(a,Lt ,Xt) and the reward function R : Xt × At 7→ R and
chooses an action At with a likelihood proportional to its re-
ward. Strictly optimal planning in POMDPs is computation-
ally intractable, and in our example the solution is approxi-
mated by one step lookahead, or by direct design, on an as-
sumption that the space of beliefs remains unchanged after
taking one action (Hauskrecht, 2000):

(1)
Q(a,Lt ,Xt) = ∑

xs

P(xs)tρ(xs,Lt + a)

+ γ max
ai∈A(Lt+a)

{Q(ai,Lt + a,Xt)},

where γ is a discount factor, and ρ is proportional to the
square of the distance traveled to reach each cell:
ρ(xs,Lt +a) ∝

1
||(Lt+a)−(i, j)||2 .

Thus, ρ(xs,Lt +a) represents the value of being in a loca-
tion Lt + a in the world xs and ∑xs P(xs)tρ(xs,Lt + a) is the
value of an action a given current beliefs. The second term
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in equation (1) describes the discounted value of subsequent
actions, assuming actions are chosen optimally.

Finally, the reward function is defined as:

R(Qt(ai)) =
exp(Qt(ai)/τ)

∑ j exp(Qt(a j)/τ)
, (2)

where τ is a so f tmax decision noise. As τ→ 0 the agent
deterministically chooses the action with the highest value,
and as τ→ ∞ the agent acts at random. For our experiments
we either set τ = 0 (optimal) or used a low level of τ = 0.01
such that actions were chosen with a probability proportional
to Q(ai,Lt ,Xt) but with most actions optimal (decision noise
conditions). A forgetting parameter 0 ≤ f ≤ 1 regresses the
agent’s beliefs toward the mean after each step so that the
agent gradually forgets whether a previously observed cell is
empty and must re-check already visited locations. Further-
more, prior knowledge about the world is used to to simulate
luck: an agent with correct prior knowledge finds the goal
sooner.

Experiments
Experiment 1
The first experiment tests whether people attribute intelli-
gence differently to optimal and to suboptimal actions.

Participants. 12 participants recruited from the Univer-
sity of Waterloo, 4 females and 8 males, median age 27.5.
Both experiments received ethics clearance from a University
of Waterloo Research Ethics Committee and from an MIT
Ethics Review Board.

Stimuli. 30 animated movies of a mouse looking for food in
a maze were shown in two blocks on a computer screen using
Psychtoolbox (Brainard, 1997). The movies were computer-
generated by solving a POMDP on one of 9 mazes with two
levels of forgetting (on, off), prior knowledge (a correct prior,
or a uniformly distributed prior belief) and decision noise (on,
off). We varied the appearance of the mouse, the layout of the
maze, the textures of the maze and the POMDP parameters
on each trial. In every movie the mouse found the treat. The
location of the food was counterbalanced so that in one half of
the mazes the mouse could find it equally quickly by optimal
planning or by luck. In another half of the mazes, the goal was
placed so that an optimal agent had to search exhaustively,
while a lucky agent with prior knowledge could get finish in
fewer steps.

Each movie was labeled according to the most likely
POMDP settings estimated by the inverse-planning infer-
ence. A movie was labelled optimal-lucky if the opti-
mal planner and the prior knowledge planner were equally
likely and optimal-unlucky if the optimal planner was most
likely. Labels prior knowledge, decision noise, noise-
forgetting, noise-forgetting-prior and noise-prior accordingly
represented combinations of parameters. A control condi-
tion suboptimal-control showed an inefficient, highly forget-
ful and random agent. Each of the conditions occurred four

times and the control condition occurred twice. The full set
of stimuli used in this and the following experiment can be
downloaded from http://cgl.uwaterloo.ca/˜mkryven/

Figure 2: An example of an optimal-lucky condition. The
agent makes an (optimal) decision to go into the room on
the left (reader’s perspective). Incidentally, it finds the goal
quickly. Dark squares indicate that the agent has not yet seen
the area.

Method. Each participant read the instructions on the com-
puter screen and viewed four familiarisation examples fol-
lowed by the 30 stimuli in two blocks. After viewing each
movie the participant recorded his or her rating into a pro-
vided Likert answer sheet on a scale from 1 (less intelligent)
to 5 (more intelligent).

Results. There was no main effect of block. A two fac-
tor ANOVA of rating for participant × condition shows a
main effect of participant (mean rating 3.44, standard devi-
ation 0.46, p < .0001) and of condition (p < .0001, Table
2). There was no significant difference between the optimal-
lucky and optimal-unlucky conditions (p = 0.99) or between
the optimal-lucky, optimal-unlucky and decision noise condi-
tions (p= .08) indicating that participants did not penalise oc-
casional inefficient moves. However, the difference between
the optimal-lucky, optimal-unlucky and the prior knowledge
conditions (p = .001, difference = 0.8) indicates that partici-
pants attributed intelligence to the agent’s strategy more than
to the agent’s outcome.

According to a Scheffe Post-Hoc test, suboptimal condi-
tions were rated differently depending on the cause inferred
by the model. Thus, the decision noise condition was rated
higher than noise-forgetting (p < .0001, difference = 1) or
noise-forgetting-prior (p < .0001, difference = 2), and prior
knowledge condition was rated higher than noise-forgetting
(p = .0002, difference = 0.9) or noise-forgetting-prior (p <
.0001, difference = 1.8). The suboptimal-control was rated
lower than all other conditions (p < .0001). Pearson corre-
lations between the agent optimality rank and human rating
is .73 and regression of optimality and rating (r2 = 53.7%),
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showing a good fit of our model to the data.

Table 2: Mean ratings and Std. err. of the mean by condition

Condition Rating SEM
optimal-lucky 4.7 0.11
optimal-unlucky 4.6 0.11
decision noise 4.1 0.11
prior knowledge 3.9 0.11
noise-prior 3.5 0.11
noise-forgetting 3 0.11
noise-forgetting-prior 2.1 0.11
suboptimal-control 1.6 0.15

The agent’s strategy can thus help explain human attribu-
tions of intelligence. But can perceptual cues, the path length
or the number of cells revisits, explain it equally well? As-
suming that a move is scored either for moving from one
cell to another or turning, ANOVA for participant×moves×
revisits, shows significant effects of participant (p < .0001),
moves (p = .001) and revisits (p < .0001). Table 3 shows
mean ratings for different averaged levels of moves and of
revisits, where move levels were obtained by splitting the tri-
als into four bins of equal size and calculating the average
number of moves per bin. Pearson correlations between the
number of moves and ratings, −.42, number of revisits and
ratings, −.49, and multiple regression of moves, revisits and
rating (r2 = 31.5%), calculated over individual trials, show
that our model provides a closer fit to the data than the per-
ceptual metrics alone.

In summary, participants did not attribute more intelligence
to lucky agents, and judged agents with an efficient decision-
making strategy to be more intelligent. The participants at-
tributed the highest intelligence to the approximately rational
agents, which either chose optimally or deviated from the op-
timal decision within a margin explainable by a softmax de-
cision noise. Moreover, the inferred cause of sub-optimality
matters: random agents are judged least intelligent of all, and
forgetful agents as less intelligent than agents with decision
noise.

Table 3: Mean ratings and Std. err. of the mean for number
of moves and revisits

Moves Rating SEM
14 4 0.76
19 3.2 0.14
23 3.1 0.38
31 3.7 0.37

Revisits Rating SEM
0 3.9 0.55
2 4.2 0.27
4 3.6 0.18
9 2.2 0.25

Experiment 2
In the second experiment we investigated how do people form
a judgement of intelligence. May people decide after observ-
ing just one decision, or do they accumulate evidence over

time? We used the same mouse in a maze scenario as in Ex-
periment 1, except that on half of the trials the movie stopped
after the mouse chose one of the rooms but before the treat
was found. In the other half of the trials the movie played
until the mouse found the treat.

Participants. 32 participants were recruited via Amazon
Mechanical Turk, 2 were discarded for failing to answer ques-
tions. The analysis thus included 30 participants (11 females,
median age 34).

Stimuli. 40 animated movies were generated by solving
POMDP on 8 different mazes. We varied the appearance of
the mouse, the layout, textures and orientation of the maze,
the location of the goal, and the POMDP settings on each
trial. There were 19 complete trials, with each condition
(optimal-unlucky, prior knowledge, decision noise and de-
cision noise with prior knowledge) occurring 4 times and
optimal-lucky occurring three times. Another 19 trials were
incomplete, 12 showing a suboptimal decision (suboptimal-
incomplete condition ) and 7 showing an optimal decision
(optimal-incomplete condition). Two control trials showed
highly forgetful, inefficient mice.

Method. Participants read the instructions on a computer
screen in a web browser and viewed 4 familiarisation ex-
amples followed by the 40 animated movies shown in two
blocks. After viewing each movie, the participant selected
a rating from a Likert scale between 1 (less intelligent) to 5
(more intelligent). At the end of the Web survey participants
were asked: How did you make your decision?

Table 4: Mean ratings and Std. err. of the mean by condition

Condition Rating SEM
optimal-lucky 4.5 0.08
prior knowledge 4.3 0.07
optimal-unlucky 4.1 0.07
noise-prior 3.9 0.07
decision noise 3.8 0.07
optimal-incomplete 3.5 0.06
suboptimal-incomplete 3.3 0.05
control 1.2 0.1

Results. There was no main effect of block. A two-factor
ANOVA of rating for participant× condition shows a main
effect of participant (p < .0001, mean 3.63, standard devia-
tion 0.45) and a main effect of condition (p< .0001, Table 4).
Main effects of age (p = .02) and gender (p = .0006) indicate
that older participants (difference between groups split by the
median age 0.24; median ages 26 and 43) and females (differ-
ence 0.3) were more generous. ANOVA of rating over incom-
plete conditions for participant × condition shows a small
difference between intelligence attributed to optimal and sub-
optimal decisions (difference = 0.17, p = .009).

In agreement with Experiment 1, the control condition was
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judged as least intelligent (p < .0001). However, there was
no difference between the optimal-lucky (p = .73), optimal-
unlucky (p = .19) and the prior knowledge conditions. More-
over, optimal-lucky and optimal-unlucky agents were rated as
different (p = .0.004, difference 0.47) indicating that online
participants judged lucky and efficient agents equally, and op-
timal agents as more intelligent when they were lucky. Pear-
son correlation between the agent optimality rank and ratings
is .55, regression of optimality and rating r2 = 34.6%.

The relationship between ratings and perceptual cues was
analysed only on full trials, as incomplete trials are always
shorter. ANOVA of rating for participant×moves× revisits
shows significant main effects of participants (p < .0001),
moves (p = .009) and revisits (p < .0001). The mean rat-
ings for number of moves and revisits are shown in Table
5. Pearson correlations between the number of moves and
ratings, −.31, and between number of revisits and ratings,
−.59. Multiple regression of moves, revisits and rating over
individual trials (r2 = 36.4%), suggests that the ratings in Ex-
periment 2 can be explained by the perceptual cues as well as
by the agent’s efficiency.

Table 5: Mean ratings and Std. err. of the mean for number
of moves and revisits

Moves Rating SEM
10 4.4 0.11
20 3.6 0.11
27 3.5 0.11

Revisits Rating SEM
0 4.1 0.13
1.5 4.2 0.1
3.5 3.8 0.07
7 2.1 0.09

Did the online participants in Experiment 2 prefer lucky
agents? To test the hypothesis that people may use more than
one way of attributing intelligence we used a k-means (Lloyd,
1982) and a Gaussian Mixture Model with a Bayesian Infor-
mation Criterion over a 3-dimensional space of correlations
of individual ratings with moves, revisits and optimality rank.
Two clusters were preferred over three or one. People in
the bigger cluster (19 participants) based their rating on the
agent’s strategy, and people in the smaller cluster relied on
perceptual cues.

ANOVA of rating for participant × condition over each
cluster shows that our model fits the judgements of people
in the strategy cluster, but not in the outcome cluster (Table
6). Participants in the Outcome cluster rated optimal-lucky
agents higher than to the optimal-unlucky ones (p < .0001,
difference = 1.54) and were indifferent between optimal and
suboptimal decisions on incomplete trials (p = .5). In con-
trast, people in the Strategy cluster were indifferent between
optimal-lucky and optimal-unlucky agents (p = .92) and on
incomplete trials rated optimal-incomplete agents higher than
the suboptimal-incomplete(p = .00002, difference 0.32).

The discrepancy between model and data reveals two dif-
ferent styles of attributing intelligence: attributing intelli-
gence to efficient strategies, or to shorter paths (Figure 3 and

Table 6: Correlations of ratings with perceptual features and
with optimality over invividual trials

Metric Strategy Cluster Outcome Cluster
Pearson, number of revisits -.50 -.73
Pearson, number of moves -.12 -.62
Pearson, Optimality .65 .40
r2, revisits, moves 35% 55%
r2, optimality 44.3% 21.8%

Figure 3: Comparing ratings between the two clusters OL-
optimal-lucky, OU-optimal-unlucky, N-decision noise, P-
prior knowledge, NP-noise-prior, OP-optimal-incomplete,
SP-suboptimal-incomplete, C-control.

Table 7). Indeed, the participants’ answers to the verbal ques-
tion support this conclusion. We divided the participant an-
swers to ‘How did you make your decision?’ into two groups:
outcome and strategy. For example, we coded a response as
strategy if it said: ‘Based on if the mouse checked every nook
and cranny.’ and as outcome if they said ‘Based on how long
it took for the rat to find the treat’. Two independent raters
agreed on 27 out of 30 participants, coding 8 of them as out-
come and 19 as strategy. The remaining 3 were randomly
assigned to either group. Importantly, the 8 participants inde-
pendently agreed on as outcome by both raters (using verbal
measures) were also the 8 participants identified as belonging
to the outcome cluster using K-Means clustering.

Discussion
Our model proposes a formal account of intelligence attribu-
tion and an apparatus for generating quantitative predictions.
The model predicts that people perceive some suboptimal de-
cisions as more intelligent than others, depending on the in-
ferred causes of suboptimal planning, in agreement with be-
havioural data.

Participants were clustered into two groups: those in the
Strategy group attribute intelligence based on partial results,
while those in the Outcome group do not decide until they

1653



Table 7: Mean ratings of conditions and Std. err. of the mean
of people in the Strategy (S) and the Outcome (O) clusters

Condition S SEM O SEM
optimal-unlucky 4.5 0.08 3.3 0.11
optimal-lucky 4.3 0.07 4.9 0.12
decision noise 4 0.07 3.3 0.11
prior knowledge 4 0.07 4.9 0.11
noise-prior 4 0.07 4 0.11
optimal-incomplete 3.6 0.04 3.2 0.006
suboptimal-incomplete 3.3 0.04 3.3 0.006
control 1.1 0.1 1.3 0.14

have seen the consequences1. Both groups, however, see
random actions as less intelligent than those that can be ex-
plained by causal inference.

Why did people differ in intelligence attribution? Our
experiments used simple mazes that most adults can easily
solve. While people in the Strategy cluster expected the agent
to do what a human would do, people in the Outcome cluster
did not. According to Gardner’s theory of multiple intelli-
gences (Gardner, 2011) as skills in different domains people
in the Outcome cluster may attribute the agent’s luck to an
invisible skill (a sense of smell). Alternatively, people may
assume that lucky agents must be intelligent based on a belief
in a just world (Lerner, 1980). The former implies that peo-
ple themselves should act rationally when solving a maze,
and the latter that people should decide randomly. We plan to
address this question in future work.

Another interesting avenue for future work is to investigate
how children attribute intelligence. Although children recog-
nise and value competence (Jara-Ettinger et al., 2015), chil-
dren also prefer lucky agents (Olson et al., 2006, 2008). To
our knowledge there are no studies evaluating children’s attri-
bution of intelligence, and at what age the abilities to reason
about outcome vs. strategy emerge.

One possible criticism of our specific implementation is
that it encodes space as a grid of squares and makes a new
decision each time the agent moves into a new square, which
may not be an accurate representation of how people navi-
gate. An alternative – encoding the maze as a weighted graph
where each room is represented by a vertex – may be a better
approximation of how people represent space. In addition,
more fine-grained rationalistic explanations in terms of vari-
able costs and reward functions may be a better causal model
for actions currently attributed to decision noise.

The goal of current research in Artificial Intelligence (AI)
is to create intelligent computer applications, such as self-
driving cars, automatic trading and intelligent energy-saving
appliances designed to take over routine human decision-
making. Such applications must be not only be algorithmi-
cally correct, but also must interact with people in a way hu-

1As Solon advised to Croesus, ‘Count no man happy until he is
dead’.

mans understand as intelligent. Thus, to make better AI ap-
plications we need to measure intelligence in technical terms,
and our model takes a step in that direction.
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