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Abstract

Humans acquire their most basic physical concepts early in
development, but continue to enrich and expand their intu-
itive physics throughout life as they are exposed to more and
varied dynamical environments. We introduce a hierarchical
Bayesian framework to explain how people can learn physi-
cal theories across multiple timescales and levels of abstrac-
tion. In contrast to previous Bayesian models of theory acqui-
sition (Tenenbaum, Kemp, Griffiths, & Goodman, 2011), we
work with more expressive probabilistic program representa-
tions suitable for learning the forces and properties that govern
how objects interact in dynamic scenes unfolding over time.
We compare our model and human learners on a challeng-
ing task of inferring novel physical laws in microworlds given
short movies. People are generally able to perform this task
and behave in line with model predictions. Yet they also make
systematic errors suggestive of how a top-down Bayesian ap-
proach to learning might be complemented by a more bottom-
up feature-based approximate inference scheme, to best ex-
plain theory learning at an algorithmic level.
Keywords: theory learning; intuitive physics; probabilistic in-
ference; physical reasoning

Introduction
People regularly reason about the physical properties of the
world around them. Glancing at a book on a table, we can
rapidly tell if it is about to fall, how it will slide if pushed,
tumble if it falls on a hard floor, sag if pressured, bend if
bent. This ability for physical scene understanding begins to
develop in infancy, and is suggested as a core component of
human cognitive architecture (Spelke & Kinzler, 2007).

While some aspects of this capacity are likely innate (Bail-
largeon, 2002), learning also occurs at multiple levels from
infancy into adulthood. Infants develop notions of contain-
ment, stability, and gravitational force over the first few
months of life (Baillargeon, 2002). With exposure, young
children acquire an intuitive understanding of remote controls
and magnets. Most young children and adults quickly adjust
to the ’unnatural physics’ of many video games, and astro-
nauts can learn to adjust to weightless environments.

How, in principle, can people learn intuitive physics from
experience? How can they grasp structure at multiple levels,
ranging from deep enduring laws acquired early in infancy
to the wide spectrum of novel and unfamiliar dynamics that
adults encounter and can adapt to? How much data are re-
quired, and how are the data brought to bear on candidate
theory hypotheses? These are the questions we ask here.

We take as a starting point the computational-level view
of theory learning as rational statistical inference over hierar-
chies of structured representations (Tenenbaum et al., 2011).
Previous work in this tradition focused on relatively spare and
static logical descriptions of theories and data; for example,
a law of magnetism might be represented as ‘if magnet(x)
and magnet(y) then attract(x,y)’, and the learner’s data might

Figure 1: Illustration
of the domain explored
in this paper, showing
the motion and inter-
action of four different
pucks moving on a
two-dimensional plane
governed by latent
physical properties and
dynamical laws, such
as mass, friction, global
and pairwise forces.

consist of propositions such as ‘attracts(ob jecta, ob jectb)’
(Kemp, Tenenbaum, Niyogi, & Griffiths, 2010). Here we
adopt a more expressive representational framework suitable
for learning the force laws and latent properties governing
how objects move and interact with each other, given obser-
vations of scenes unfolding dynamically over time. We com-
pare the performance of an ideal Bayesian learner who can
represent dynamical laws and properties with the behavior of
human learners asked to infer the novel physics of various mi-
croworlds from short movies (e.g., the snapshot shown in Fig.
1). While people are generally able to perform this challeng-
ing task, they also make systematic errors which are sugges-
tive of how they might use feature-based inference schemes
to approximate ideal Bayesian inference.

Formalizing theory learning
The core of our formal treatment is a hierarchical probabilis-
tic generative model for theories (Kemp et al., 2010; Ullman,
Goodman, & Tenenbaum, 2012), specialized to the setting of
intuitive physical theories (Fig.2). The hierarchy consists of
several levels, with more concrete (lower-level) concepts be-
ing generated from more abstract versions in the level above,
and ultimately bottoming out in data that take the form of dy-
namic motion stimuli. Generative knowledge at each level
is represented formally using (define ...) statements in
Church, a probabilistic programming language (Goodman,
Mansinghka, Roy, Bonawitz, & Tenenbaum, 2008).

Probabilistic programs are useful for representing knowl-
edge with uncertainty (e.g. Stuhlmüller & Goodman, 2013).
Fig. 2(iii) shows examples of probabilistic definition state-
ments within our domain of intuitive physics, using Church.
Fig. 2(i) shows the levels associated with these statements.
The arrows from one level to the next represent how each
level is sampled from the definitions and associated probabil-
ity distributions of the level above it.

It is not possible to fully detail the technical aspects of
the model in the space provided, and so we provide a gen-
eral overview. The model is a hierarchy of levels from N
(framework level) to 0 (observed data). The top-most level N
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Level 2!

Level 0 (data)!

Mass!

Friction!

Initial conditions!

(i)! (ii)!

Properties!

Force classes! Pairwise:!

Global:!

Level 1 !
Property !
values!

Force !
parameters!

Force b/w reds: attract!

: large mass!
: medium mass!

: high friction!
: small mass!

: no friction!

(define (pairwise-force c1 c2) 
 (let* ((a (uniform-draw ’ (-1 0 1)))) 
 (lambda (o1 o2) 
  (let ((r (euc-dist o1 o2)))  
   (/ (* a del(o1,col(o1)) del(o2,col(o2))) 
      (power r 2)))))) 

1!

2!

(define (global-force) 
  (let* ((d (uniform-draw compass-dir))) 
   (lambda (o) (* k d)))) 

(define (mass)  
   (pair “mass” (uniform ’ (1 3 9))))  

(define (friction)  
   (pair “friction” ’ (uniform ’ (0 5 20))))  

(define world-entities 
 (map sample-values entity-list)) 
    

(define world-forces 
 (map sample-parameters force-list) 

(define scenario 
 (let* ( 

  (init-cond (sample-init world-entities))) 
   (run-dynamics world-entities 
      world-forces init-cond steps dt))) 

(iii)!

Entity types! Puck:!

Surface:!

(define puck (make-entity 
    pos shape mass vel … )) 

                      
(define surface (make-entity  

     pos shape friction … )) 
                          

Level N !
Entity! (define (make-entity property1 property2 … ) 

  (list property1 property2 … )) 

Newtonian !
Dynamics!

(define (run-dynamics entities forces  
         init-cond steps dt) 
  (if (= steps 0) ‘() 
   (let* ((m (get-mass entities)) 

   (F (apply-forces forces entities)) 
   (a (/ F m)) 
      (new-cond (integrate init-cond  
     a dt noise))) 
   (pair new-cond (run-dynamics entities 

    forces new-cond (- 1 step) dt))))) 
  

Innate !
concepts!

Figure 2: Formal framework for learning intuitive physics in differ-
ent domains: (i) The general hierarchy going from abstract princi-
ples and assumptions to observable data. The top-most level of the
hierarchy assumes a general noisy-Newtonian dynamics. (ii) Apply-
ing the principles in the left-most column to the particular domain
illustrated by Fig. 1 (iii) Definition statements in Church, capturing
the notions shown in the middle column with a probabilistic pro-
gramming language.

represents general framework knowledge (Wellman & Gel-
man, 1992) and expectations about physical domains. The
concepts in this level include entities, which are a collection
of properties, and forces, which are functions of properties
and govern how these properties change over time. Forces
can be fields that apply uniformly in space and time, such as
gravity, or can be event-based, such as the force impulses ex-
erted between two objects during a collision. Properties are
named values or distributions over values. Properties such as
location and shape are privileged - it is assumed all entities
have them. Mass is another privileged property - it is assumed
all dynamic entities (those that can potentially move) have it.
Dynamic entities correspond then to the common definition
of matter as ‘a thing with mass that occupies space’.

The framework level defines a ‘Newtonian-like’ dynam-
ics, consistent with suggestions from several recent studies of
intuitive physical reasoning in adults (e.g. Battaglia, Ham-
rick, & Tenenbaum, 2013; Sanborn, Mansinghka, & Griffiths,

2013) and infants (Téglás et al., 2011). As Sanborn et al.
(2013) show, such a ‘noisy-Newtonian’ representation of in-
tuitive physics can account for previous findings in dynamical
perception that have supported a heuristic account of physical
reasoning (Gilden & Proffitt, 1989; Todd & Warren, 1982), or
direct perception models (e.g. Andersson & Runeson, 2008).

Descending from Level N to Level 0, concepts are increas-
ingly grounded by sampling from the concepts and associated
probability distributions of the level above Fig. 2(i)). Each
level in the hierarchy can spawn a large number of instantia-
tions in the level below it. Each lower level of the hierarchy
details the types of possible entities, properties and forces in
it. All members of an entity type share properties, and are
governed by the same types of forces. A force type speci-
fies the number and types of entities it acts on, and how their
relevant properties change over time.

Space of learnable theories. Levels 0-2 in Fig. 2 capture
the specific sub-domain of intuitive physics we study in this
paper’s experiments: two-dimensional discs moving over var-
ious surfaces, generating and affected by various forces, col-
liding elastically with each other and with barriers bounding
the environment (cf Fig. 1).

Levels 0-2 represent the minimal framework needed to ex-
plain behavior in our task and we remain agnostic about more
abstract background knowledge that might also be brought to
bear. We give participants explicit instructions that effectively
determine a single Level 2 schema for the task, which gener-
ates a large hypothesis space of candidate Level 1 theories,
which they are asked to infer by using observed data at Level
0.

Level 2: The “hockey-puck” domain. This level specifies
the entity types puck and surface. All entities within the type
puck have the properties mass, elasticity, color, shape, posi-
tion, and velocity. Level 2 also specifies two types of force:
Pairwise forces cause pucks to attract or repel, following the
’inverse square distance’ form of Newton’s gravitation law
and Coulomb’s Law. Global forces push all pucks in a single
compass direction. We assume forces of collision and friction
that follow their standard forms, but they are not the subject
of inference here.

Level 1: Specific theories. The hockey-puck domain can
be instantiated as many different specific theories, each de-
scribing the dynamics of a different possible world in this do-
main. A Level 1 theory is determined by sampling particular
values for all free parameters in the force types, and for all
entity subtypes and their subtype properties (e.g., masses of
pucks, friction coefficients of surfaces). Each of the sampled
values is drawn from a probability distribution that the Level
2 theory specifies. So, Level 2 generates a prior distribution
over candidate theories for possible worlds in its domain.

The domain we study here allows three types of pucks,
indexed by the colors red, blue and yellow. It allows three
types of surfaces (other than the default blank surface), in-
dexed by the colors brown, green and purple. Puck mass
values are 1, 3, or 9, drawn with equal probability. Surface
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friction coefficients values are 0, 5 or 20, drawn with equal
probability. Different pairwise forces (attraction, repulsion,
or no interaction) can act between each of the different pairs
of puck types, drawn with equal prior probability. Finally,
a global force may push all pucks in a given direction, ei-
ther ↑,↓,←,→ or 0, drawn with equal probability. We fur-
ther restrict this space by considering only Level 1 theories
in which all subclasses differ in their latent properties (e.g.
blue, red and yellow pucks must all have different masses).
While this restriction (together with the discretization) limits
the otherwise-infinite space of theories, it is still a very large
space, containing 131,220 distinct theories.

Level 0: Observed data. The bottom level is a concrete
scenario, specified by the precise individual entities under ob-
servation and the initial conditions of their dynamically up-
dated properties. Each Level 1 theory can be instantiated in
many different scenarios. The pucks’ initial conditions were
drawn from a zero-mean Gaussian distribution for positions
and a Gamma distribution for velocities. Once the entities and
initial conditions are set, the positions and velocities of all
entities are updated according to the Level 1 theory’s specific
force dynamics for T time-steps, generating a path of multi-
valued data points, d0, . . . ,dT . The probability of a path is
simply the product of the probabilities of all the choices used
to generate the scenario. Finally, the actual observed posi-
tions and velocities of all entities are assumed to be displaced
from their true values by Gaussian noise.

Theory learning as Bayesian inference
The model described so far allows us to formalize different
kinds of learning as inference over different levels of the hi-
erarchy. This approach can in principle be used for reasoning
about all levels of the hierarchy, including the general shape
of forces and types of entities, the unobserved physical prop-
erties of entities, as well as the existence, shape and parame-
ters of unseen dynamical rules. In this paper, we specifically
consider inference over the properties of mass and friction,
and the existence and direction of pairwise and global forces.
We do this by inverting the generative framework to obtain
the posterior over all possible theories that could have pro-
duced the observed data. We then marginalize out irrelevant
aspects of the theory to obtain posterior probabilities over the
dynamic quantity of of interest (Fig.3a and b).

Simulation-based approximations
The inversion of the generative model is in principle suffi-
cient for inference over any unknown quantity of interest in
it, and in our particular discretized domain we can explicitly
sum over all possible theories. However, integrating over the
full space of theories is generally intractable, and it is implau-
sible that for any dynamic stimuli people perform massive in-
ference over all possible models that could have generated it.
Also, people can use more than point-wise deviation between
expected paths to estimate physical parameters. For example,
if people think two objects attract they might expect that over
time the mean distance between the objects should shrink.

This psychological intuition suggests a principled way
of approximating the full inference, following a statistical
method known as Approximate Bayesian Computation (see
Blum, Nunes, Prangle, & Sisson, 2013, for a review). This
approach is similar to ‘indirect inference’ which assumes a
model that can generate simulated data d′ given some param-
eters θ, but does not try to estimate θ directly from observed
data d. Rather, we first construct an auxiliary model with pa-
rameters β and an estimator β̃ that can be used to evaluate
both d and d′. The indirect estimate of the parameter of in-
terest, θ̂, is then the parameter that generated the simulated
data whose estimator value β̃(d′) is as close as possible to the
estimator value of observed data, β̃(d).

Here we will use the following approximation: Our frame-
work allows us to generate simulated object paths given phys-
ical parameters θ, which we then wish to estimate. We begin
by drawing simulated data for all the models within the do-
main over all scenarios, giving us several hundred thousand
paths. For every physical parameter θ we construct a set of
summary statistics that can be evaluated on any given path,
and act as estimators. For example, the summary statistic
avgPositionX(d) calculates the mean x-axis position of all
objects over a given path, and can be used as an estimator for
the existence of a global force along the x-axis. We evalu-
ate these sufficient statistics for each of the parameter values
over all the paths, obtaining an empirical likelihood distribu-
tion which is smoothed with gaussian kernels. The estimated
likelihood of a given parameter is then the likelihood of the
sufficient statistic for the observed data (see Figure 3 for an
illustration of this process).
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Figure 3: Approximations and the ideal observer for pairwise forces.
For a given scenario (a), many alternate paths are generated and
compared to the observed path, giving a log likelihood for all the-
ories. Posterior estimates are obtained by marginalizing over the
theories (b), or by comparing the summary statistics of the scenario
to its empirical distribution over many simulations done offline (c).
We also consider a simple linear combination of the methods (d).

Psychologically, this approximation means the following:
people can imagine dynamical scenes unfolding over time,
but when reasoning about a specific scene they only compute
certain summary statistics. People compare the values of the
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summary statistics in the specific scene to a repository which
was computed by imagining many possible scenes. These
repositories are built by using the same imagery capacity that
lets people imagine individual scenes evolving. For example,
people might watch a specific scene and compute how close
some pucks are on average (the summary statistic). People
then compare that value to a repository of average particle
distances. People can then conclude that the particles are
not attracting – because based on the repository of previous
scenes if the particles were attracting they should be closer
together on average.

We examine these various ways of physical reasoning, by
considering people’s performance on a novel dynamical task.

Experiment
Participants Three hundred participants from the US were
recruited via the Amazon Mechanical Turk service, and were
paid for their participation. Ten participants were excluded
from analysis for failing comprehension questions.

Stimuli 60 videos were used as stimuli, each one lasting 5
seconds and depicting several pucks moving and colliding.

We constructed the stimuli in the following manner: First,
we defined a set of 10 worlds that differ in the physical rules
underlying their dynamics, as well as in the properties of the
objects that appear in them. For example: in world1 blue
pucks have a large mass and there are no global or coupling
forces, whereas in world5 blue pucks are light and red pucks
repel one another. A full description of the underlying physi-
cal rules of each world is available at http://www.mit.edu/
˜tomeru/physics2014/underlyingRules.pdf

Next, for each world we created 6 different scenarios that
differ in their initial conditions (i.e. the starting location and
velocity of the pucks and surfaces), as well as the particu-
lar objects used and the size of the surfaces. For example:
the first scenario of world1 has red, yellow and blue pucks,
whereas the second scenario uses only red and yellow pucks.
The initial conditions were drawn from random distributions,
and in practice most of the movies started with the pucks al-
ready moving in some arbitrary way.

Given the dynamical rules of the world and initial condi-
tions, we unfolded the scenarios over 400 steps and created a
video detailing the motion of the objects over time 1.

Procedure Each participant saw 5 videos drawn from the
set of 60 possible stimuli. The video-participant pairing was
done according to a Latin-square design, such that approxi-
mately thirty participants saw each video. The order of the 5
videos was randomized for each participant.

Participants were informed what objects, forces and phys-
ical properties were potentially present across all the stimuli,
and that objects of the same color have the same properties.
Participants were instructed to think of the videos as similar
to ’hockey pucks moving over a smooth white table-top’.

1All stimuli are available at http://www.mit.edu/˜tomeru/
physics2014/stimuli/
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Figure 4: Analysis of participant performance using: (a) Ordinal lo-
gistic regression for mass (left) and friction (right). Shaded black
areas represent uncertainty on parameter estimates, colored patches
show the ordinal responses. The downward trend indicates a greater
proportion of participants selecting the qualitatively correct response
as the quantitative value goes up, (b) Per scenario analysis with
transformed ratings for mass (left) and friction (right). Each black
dot represents the average rating of 25-30 participants. The solid
line shows the average response across all scenarios. Dotted lines
connect mass/friction ratings in the same scenario, and so a rising
line means a correct ranking. (c) Confusion matrices for pairwise
forces (top) and global forces (bottom).

After the presentation of each video participants rated
the entire set of possible physical properties. For ex-
ample, for each puck color participants were asked how
massive are [color] pucks?, with possible answers being
heavy, medium or light. In some cases not all the ques-
tions were relevant (for example, a question about the
mass of the blue puck when no blue pucks are present),
in which case participants could answer “can’t tell from
video”. 13 questions per video, 5 videos per per partic-
ipant means 65 data points per participant. An example
experiment is available at http://www.mit.edu/˜tomeru/
physics-experiment-turk/physics-experiment.html.

Participant Performance
Overview Participants correctly answered 53% of the ques-
tions on average, with a standard error of ∼ 13%.2

Participants’ quantitative performance was generally good
given the nature of the stimuli, and it differed depending on
the particular physical property being considered.

Analysis We analyzed the results in two ways:
Aggregating over the different scenarios: We obtained

the empirical distribution of responses over the possible an-
swers across all scenarios. We collapsed across the property
of color to consider 4 physical properties: Mass, friction,
pairwise forces and global forces. For mass and friction prop-
erties the responses were clearly ordinal (light, medium, and
heavy for mass; smooth, a little rough, and very rough for
friction) and the ground truth was a continuous ratio scale,
so we can fit an ordinal logistic regression to the participants,

2There was a small significant effect of learning over time, which
we do not account for explicitly in the analysis: 52% correct on first
2 videos vs. 54% answers on last 2 videos.
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shown in Fig. 4a. The figure displays the cumulative proba-
bility on the left y-axis, and the relevant response on the right
y-axis. For example, on this regression the probability people
will answer ‘light’ when the true mass is in fact light (equal to
1) is 52%. The probability they will answer ‘medium’ is 33%
(85%-52%), and the probability that they will answer ‘heavy’
is the remaining 15%. This is close to the empirical values of
47%/37%/16%.

An ordinal regression cannot be used for the global and
coupling forces, and so Fig. 4c shows empirical confusion
matrices, detailing the percentage of people which chose each
option given the ground truth.

Transforming responses per scenario For mass and fric-
tion we can assess performance in a more refined way, by
considering the distribution of responses for each puck (and
surface) in scenario, and transforming this distribution into
a quantitative prediction. We take the expectation of the
physical property relative to the empirical distribution (e.g.,
if 60% of participants rated a yellow puck in scenario 7 as
‘heavy’ and 40% rated it as ’medium’, the converted rating is
0.6 ∗ 9+ 0.4 ∗ 3 = 6.6), and compare with the ground truth (
Fig. 4b). We next consider each property separately:

1. Mass: The downward trend in Fig. 4a, shows that par-
ticipants correctly shift in the probability of answering that
a mass is heavier as it becomes heavier. The linear corre-
lation in Fig. 4b shows that despite a large degree of vari-
ance for any given mass, participants were able to overall
correctly scale the masses. The ability to correctly rank and
quantitatively scale multiple masses is of interest, as exper-
iments on inferring mass from collisions usually focused on
judgements of mass ratios for two masses, often requiring bi-
nary responses of ‘more/less massive’ (e.g. Gilden & Prof-
fitt, 1989). 2. Friction: Again we see a downward trend in
the logistic regression, depicted in Fig. 4a. Compared with
the regression for the masses, participants lean more heavily
towards the lower end of the responses, perhaps because a
‘null’ response (no friction) is easier to make than a graded
response along a continuum. The linear correlation depicted
in Fig. 4b shows that participants were also able to correctly
rank the roughness of the surfaces, though they could better
distinguish between high- and low-friction surfaces than they
were able to distinguish low- and zero-friction surfaces. To
our knowledge this is the first systematic study of people’s
ranking of the friction properties of surfaces in the intuitive
physics literature. 3. Pairwise forces: As shown in Fig. 4c
participants performed well on attraction forces, correctly de-
tecting them on average in 82% of the cases in which they ex-
isted, while not reporting them on average in 88% of the cases
in which they did not exist. As for repulsion and non-forces,
their performance was above chance, although it was signif-
icantly worse than attraction. Note in particular that there is
an asymmetry in the column for non-forces, indicating partic-
ipants are confusing repulsion and non-existent forces, much
more than they are confusing attraction and non-forces (32%
vs. 15%). 4. Global forces: As shown in Fig. 4c participants

performed relatively well on detecting global forces, identify-
ing the correct global force 70% of the time on average. Note
that generally any force is more likely to be confused with the
null-force case than it is with any specific force.

Comparison to different models
For the Ideal Observer model (IO), we get predictions in the
following way: For each scenario, we fix the observed initial
conditions and simulate the resulting paths under all param-
eter hypotheses. We then score each model by assessing the
deviation of its simulated path from the observed path. Fi-
nally, for each parameter of interest we marginalize over the
other parameters, to obtain a log-likelihood score for the rele-
vant parameter (see Fig. 3a and b). For the Simulation Based
Approximation model (SBA), we get predictions by follow-
ing the procedure detailed at the end of the formal modeling
section. We also consider a combination of these two ap-
proaches, linearly summing weighted likelihoods from both
approaches for any given physical parameters. These various
approaches are illustrated for a particular example in (see Fig.
3). All models are fit to participant data by uniformly scaling
their predictions using a noise parameter β, optimizing for
root-mean-square-error (RMSE).

We begin our comparison by collapsing across scenarios
to compare with the logistic regressions and confusion ma-
trices shown in Fig. 4. For mass inference, the SBA model
outperforms the IO model and is quite close to people’s per-
formance. The combined IO&SBA model places its entire
weight on the SBA model. For friction, the SBA model out-
performs the IO model, although the combined IO&SBA out-
performs both (Fig.5a). For the confusion matrices we mea-
sured fit using RMSE. For pairwise forces, people showed
a particular asymmetry when they incorrectly judge a null-
force, mistaking it more often for a repulsive force than an
attractive one (Fig. 4b). We can understand this difference
intuitively – attraction pulls bodies together which provides
even further evidence for attraction over time, while repulsion
pushes bodies apart and becomes weaker, providing less evi-
dence for itself over time. Such an asymmetry plays out over
the entire scene, and does not come naturally out of the IO
model, which sums up error across local deviations. By con-
trast, a summary statistic measuring the average pairwise dis-
tance does replicate this asymmetry. The combined IO&SBA
is the closest to that of people in terms of RMSE (Fig. 5b).
For global forces, people were confused between any given
force and the absence of force, relative to any other force.
Both the IO and SBA models replicate this finding, although
the IO model is closer to people. Also, the SBA model is
quite bad at detecting the absence of global forces, perhaps
because there is no simple feature to account for a null-force.
Again, the combination IO&SBA produces a confusion ma-
trix which is closest to that of people (Fig. 5c).

We also considered the correlation between people and the
models for each scenario, for each object and property, with-
out refitting the noise parameter. We found that for most
physical properties the combined model’s results were equal
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Figure 5: Comparison of model performance for properties (a) fric-
tion and mass (b) pairwise forces and (c) global forces.

to or slightly better than the individual models. For the pair-
wise forces there was a significant gain, with the correlation
for IO&SBA being 0.81, while the SBA model and IO model
had correlations of 0.75 and 0.56 respectively.

General discussion
We found that a hybrid between top-down Bayesian learn-
ing and bottom-up feature-based heuristic inference emerged
as the best empirical fit to participants’ behavior in learning
physical laws from dynamic scenes. This general approach
makes good engineering sense: It can transcend inherent lim-
itations of each component method and serve as the basis for
more robust real-world learning. The ideal Bayesian observer
uses evidence in an optimal way, but it is computationally in-
tractable. The feature-based statistics are a useful heuristic
in many cases, but are unable to account for the inferences
people make when the initial conditions of a scenario devi-
ate from the norm. In our setup, feature-based statistics do
not replace the knowledge of a generative model, since they
themselves require the simulations of a generative model to
be computed. We considered a simple way of linearly com-
bining the top-down and bottom-up models. While this ap-
proach performed reasonably, it does not get around the need
to search a large space of theories for the ideal observer. A
more psychologically plausible mechanism might include us-
ing the summary statistics of a given scenario to pick out a

small space of ‘reasonable’ theories and then use Bayesian
inference on this smaller space.

There are many questions that are still open when consid-
ering the challenge of inferring physical dynamics from per-
ceptual scenes. For example, to what extent are the computa-
tional processes underlying intuitive physics shared between
adults and children? While some physical knowledge devel-
ops over time, it is possible that a basic understanding of enti-
ties, forces and dynamics, is innate. Our experiments focused
on adults, but one advantage of our novel stimuli is that they
can be easily adapted to experiments with young children or
infants, using simple responses or violation-of-expectation to
indicate what they learn from brief exposures.

The combination of hierarchical Bayesian learning, an ex-
pressive representation for dynamical theories in terms of
probabilistic programs, and psychologically plausible ap-
proximate inference schemes offers a powerful paradigm for
modeling the content and acquisition of a broad swath of hu-
man intuitive physics.
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