Help or Hinder: Bayesian Models of Social Goal Inference

Abstract

Everyday social interactions are heavily influenced by our snap judgments about others goals. Even young infants can infer the goals of intentional agents from observing how they interact with objects and other agents in their environment: e.g., that one agent is helping or hindering anothers attempt to get up a hill or open a box. We propose a model for how people can infer these social goals from actions, based on inverse planning in multiagent Markov decision problems (MDPs). The model infers the goal most likely to be driving an agents behavior by assuming the agent acts approximately rationally given environmental constraints and its model of other agents present. We also present behavioral evidence in support of this model over a simpler, perceptual cue-based alternative.

Publication
Advances in Neural Information Processing Systems 22
Tomer Ullman
Tomer Ullman
Primary Investigator

My research focuses on the structure and origin of knowledge, guided by perspectives and methods from cognitive science, cognitive development, and computational modeling. By combining these, I hope to better understand the form and development of the basic commonsense reasoning that guides our interaction with the world and the people in it.